Selective De-noising of Sparse-Coloured Images
نویسنده
چکیده
Since time immemorial, noise has been a constant source of disturbance to the various entities known to mankind. Noise models of different kinds have been developed to study noise in more detailed fashion over the years. Image processing, particularly, has extensively implemented several algorithms to reduce noise in photographs and pictorial documents to alleviate the effect of noise. Images with sparse colours-lesser number of distinct colours in them-are common nowadays, especially in astronomy and astrophysics where black and white colours form the main components. Additive noise of Gaussian type is the most common form of noise to be studied and analysed in majority of communication channels, namely-satellite links, mobile base station to local cellular tower communication channel,et. al. Most of the time, we encounter images from astronomical sources being distorted with noise maximally as they travel long distance from telescopes in outer space to Earth. Considering Additive White Gaussian Noise(AWGN) to be the common noise in these long distance channels, this paper provides an insight and an algorithmic approach to pixel-specific de-noising of sparsecoloured images affected by AWGN. The paper concludes with some essential future avenues and applications of this de-noising method in industry and academia. Keywords—De-noising, Gaussian, Redistribution, Selective.
منابع مشابه
Impulsive Noise Elimination Considering the Bit Planes Information of the Image
Impulsive noise is one of the imposed defectives degrades the quality of images. Performance of many image processing applications directly depends on the quality of the input image. Hence, it is necessary to de-noise the degraded images without losing their valuable information such as edges. In this paper we propose a method to remove impulsive noise from color images without damaging the ima...
متن کاملDe-Noising SPECT Images from a Typical Collimator Using Wavelet Transform
Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT ...
متن کاملImage De-Noising and Micro Crack Detection of Solar Cells
Solar cell is known as a sustainable and environment friendly source of energy in nature. It converts sunlight directly into electricity with zero emission and also without side-effects on the environment. But, solar cells have optical and mechanical defects which include the type of micro crack, the size of crack, and the noise from electrical or electromechanical interference during the image...
متن کاملComparative Study of Different Wavelet based Image De-noising Methods
The de-noising is a challenging task in the field of signal and image processing. Any natural image corrupted by gussian noise can be de-noised using wavelet method. Wavelet-based image denoising is an important technique in the area of image noise reduction. Wavelets have their natural ability to represent images in a very sparse form which is the foundation of wavelet-based denoising through ...
متن کاملPAIRED ANISOTROPIC DISTRIBUTION FOR IMAGE SELECTIVE SMOOTHING
In this paper, we present a novel approach for image selective smoothing by the evolution of two paired nonlinear partial differential equations. The distribution coefficient in de-noising equation controls the speed of distribution, and is determined by the edge-strength function. In the previous works, the edge-strength function depends on isotropic smoothing of the image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.09455 شماره
صفحات -
تاریخ انتشار 2016